Mechanical Behavior of InP Twinning Superlattice Nanowires
نویسندگان
چکیده
منابع مشابه
Growth and properties of coherent twinning superlattice nanowires.
Although coherent twin boundaries require little energy to form in nanoscale single crystals, their influence on properties can be dramatic. In recent years, some important steps forward have been made in understanding and controlling twinning processes at the nanoscale, making possible the fabrication of nanoengineered twinning superlattices in crystalline nanowires. These advances have opened...
متن کاملThermoelectric properties of superlattice nanowires
We report here on a theoretical model for the electronic structure and transport properties of superlattice nanowires, considering their cylindrical wire boundary and multiple anisotropic carrier pockets. The thermoelectric properties of superlattice nanowires made of various lead salts ~PbS, PbSe, and PbTe! are investigated as a function of the segment length, wire diameter, crystal orientatio...
متن کاملElectrodeposition of Thermoelectric Superlattice Nanowires
There is a renewed interest in the field of thermoelectrics because of the remarkable efficiency improvement that can be achieved in nanostructured materials, for example, superlattice thin films and quantum dots. Theoretical calculations predict that further enhancement of the thermoelectric figure of merit can be achieved in superlattice nanowires (zero-dimensional) [5] rather than convention...
متن کاملThermal conductivity of SiÕSiGe superlattice nanowires
The thermal conductivities of individual single crystalline Si/SiGe superlattice nanowires with diameters of 58 and 83 nm were measured over a temperature range from 20 to 320 K. The observed thermal conductivity shows similar temperature dependence as that of two-dimensional Si/SiGe superlattice films. Comparison with the thermal conductivity data of intrinsic Si nanowires suggests that alloy ...
متن کاملTwinning in AuCu3(Ag) II long-period superlattice
Ternary Au-Ag-Cu alloys differing in composition were produced by means of a sequential gradual sputtering of elemental thin films. The resultant multilayers were then subjected to various heat treatments to promote a phase formation by interdiffusion. A long-period superlattice AuCu3 I1 was found among the different phases. The microstructure of this phase revealed growth stacking faults and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2019
ISSN: 1530-6984,1530-6992
DOI: 10.1021/acs.nanolett.9b01300